Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(4): 491-501, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650274

RESUMO

Recent studies of microbial biogeography have revealed the global distribution of cosmopolitans and dispersal of regional endemics, but little is known about how these processes are affected by microbial evolution. Here, we compared DNA sequences from snow/glacier algae found in an 8000-year-old ice from a glacier in central Asia with those from modern snow samples collected at 34 snow samples from globally distributed sites at the poles and mid-latitudes, to determine the evolutionary relationship between cosmopolitan and endemic phylotypes of snow algae. We further applied a coalescent theory-based demographic model to the DNA sequences. We found that the genus Raphidonema (Trebouxiophyceae) was distributed over both poles and mid-latitude regions and was detected in different ice core layers, corresponding to distinct time periods. Our results indicate that the modern cosmopolitan phylotypes belonging to Raphidonema were persistently present long before the last glacial period. Furthermore, endemic phylotypes originated from ancestral cosmopolitan phylotypes, suggesting that modern regional diversity of snow algae in the cryosphere is a product of microevolution. These findings suggest that the cosmopolitans dispersed across the world and then derived new localized endemics, which thus improves our understanding of microbial community formation by microevolution in natural environments.


Assuntos
Clorófitas , Clorófitas/genética , DNA , Camada de Gelo
2.
Glob Chang Biol ; 26(12): 6644-6656, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969121

RESUMO

Alpine regions are changing rapidly due to loss of snow and ice in response to ongoing climate change. While studies have documented ecological responses in alpine lakes and streams to these changes, our ability to predict such outcomes is limited. We propose that the application of fundamental rules of life can help develop necessary predictive frameworks. We focus on four key rules of life and their interactions: the temperature dependence of biotic processes from enzymes to evolution; the wavelength dependence of the effects of solar radiation on biological and ecological processes; the ramifications of the non-arbitrary elemental stoichiometry of life; and maximization of limiting resource use efficiency across scales. As the cryosphere melts and thaws, alpine lakes and streams will experience major changes in temperature regimes, absolute and relative inputs of solar radiation in ultraviolet and photosynthetically active radiation, and relative supplies of resources (e.g., carbon, nitrogen, and phosphorus), leading to nonlinear and interactive effects on particular biota, as well as on community and ecosystem properties. We propose that applying these key rules of life to cryosphere-influenced ecosystems will reduce uncertainties about the impacts of global change and help develop an integrated global view of rapidly changing alpine environments. However, doing so will require intensive interdisciplinary collaboration and international cooperation. More broadly, the alpine cryosphere is an example of a system where improving our understanding of mechanistic underpinnings of living systems might transform our ability to predict and mitigate the impacts of ongoing global change across the daunting scope of diversity in Earth's biota and environments.


Assuntos
Lagos , Rios , Mudança Climática , Ecossistema , Neve
3.
Heredity (Edinb) ; 120(6): 562-573, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29302050

RESUMO

Despite the crucial role of cyanobacteria in various ecosystems, little is known about their evolutionary histories, especially microevolutionary dynamics, because of the lack of knowledge regarding their mutation rates. Here we directly estimated cyanobacterial mutation rates based on ancient DNA analyses of ice core samples collected from Kyrgyz Republic that dates back to ~12,500 cal years before present. We successfully sequenced the 16S rRNA and 16S-23S internal transcribed spacer (ITS) region. Two cyanobacterial operational taxonomic units (OTUs) were detected from the ancient ice core samples, and these OTUs are shared with those from the modern glacier surface. The mutation rate of ITS region was estimated by comparing ancient and modern populations, and were at the magnitude of 10-7substitutions/sites/year. By using a model selection framework, we also demonstrated that the ancient sequences from the ice sample were not contaminated from modern samples. Bayesian demographic analysis based on coalescent theory revealed that cyanobacterial population sizes increased over Asia regions during the Holocene. Thus, our results enhance our understanding of the enigmatic timescale of cyanobacterial microevolution, which has the potential to elucidate the environmental responses of cyanobacteria to the drastic climatic change events of the Quaternary.


Assuntos
Cianobactérias/genética , Microbiologia Ambiental , Evolução Molecular , Taxa de Mutação , Mutação , Cianobactérias/classificação , DNA Espaçador Ribossômico , Camada de Gelo/microbiologia , Quirguistão , Metagenoma , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S , Seleção Genética
4.
Environ Sci Technol ; 38(18): 4728-33, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15487779

RESUMO

Stable sulfur isotope measurements (delta34S) made on samples collected from a 2 m snowpit on the Inilchek Glacier, Tien Shan Mountains (42.16 degrees N, 80.25 degrees E, 5100 m) are used to estimate sources of sulfate (SO4(2-)) in high-elevation Central Asian precipitation. Comparison of snowpit oxygen isotope (delta18O) data with previous work constrains the age of the snowpit samples to the summer season during which they were retrieved (1999). Delta34S measurements were made at 10 cm resolution (20 samples total), with delta34S values ranging from 0.4/1000 during background ([SO4(2-)] < 1 microequiv L(-1)) periods to 19.4/1000 during a single high [SO4(2-)] event. On the basis of the significant correlation (r = 0.87) between [SO4(2-)] and delta34S values, coupled with major ion concentration time series and concentration ratios, we suggest a two-component mixing system consisting of evaporite dust and anthropogenic SO4(2-) to explain the observed delta34S values. Using a regression model, we estimate that during the 1999 summer season 60% of the deposited SO4(2-) was from an evaporite dust source, while 40% of the SO4(2-) was from anthropogenic sources. Due to the potentially large and unconstrained range of delta34S values for both evaporite and anthropogenic SO4(2-) sources in Asia, the error in our estimates is difficult to assess. However, the delta34S data from the 1999 Tien Shan snowpit provide the first unambiguous identification of evaporite and anthropogenic SO4(2-) in high-elevation Asian precipitation, and future ice core studies using improved analysis techniques and source delta34S values can provide detailed information on sulfur biogeochemistry and anthropogenic impacts in Asian alpine regions.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental/métodos , Isótopos de Oxigênio/análise , Neve/química , Sulfatos/análise , Isótopos de Enxofre/análise , Ásia Central , Gelo/análise , Camada de Gelo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...